SUPPORTING INFORMATION

Chimeric Agents Derived from the Functionalized Amino Acid, Lacosamide, and α -AminoAmide, Safinamide: Evaluation of their Inhibitory Actions on Voltagegated Sodium Channels, and Antiseizure and Anti-nociception Activities and Comparison with Lacosamide and Safinamide

Ki Duk Park,^{1,a} Xiao-Fang Yang,² Erik T. Dustrude,³ Yuying Wang,² Matthew S. Ripsch,⁴ Fletcher A. White,⁴ Rajesh Khanna,^{2,*} and Harold Kohn^{1,5,6,*}

From the ¹Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and the ⁶Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States

²Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85742, United States

³Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, ⁴Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202

⁵NeuroGate Therapeutics, Inc., 150 Fayetteville Street, Suite 2300, Raleigh, NC 27601

*Corresponding authors

Table S1. Elemental Analyses for New Compounds

Cmpd	Molecular Formula	Calculated (%)	Found (%)
(R)- 7	$C_{20}H_{23}CIN_2O_4$	C, 61.46; H, 5.93; Cl, 9.07; N, 7.17	C, 61.55; H, 5.97; Cl, 8.89; N, 7.17
(R)- 8	$C_{20}H_{23}CIN_2O_4$	C, 61.46; H, 5.93; Cl, 9.07; N, 7.17	C, 61.75; H, 5.86; Cl, 9.15; N, 7.11
(R)- 9	$C_{21}H_{23}F_3N_2O_5$	C, 57.27; H, 5.26; F, 12.94; N, 6.36	C, 57.08; H, 5.20; F, 12.88; N, 6.30
(R)- 10	$C_{21}H_{23}F_3N_2O_5$	C, 57.27; H, 5.26; F, 12.94; N, 6.36	C, 57.35; H, 5.28; F, 12.78; N, 6.38
(R)- 25	C ₂₂ H ₂₇ ClN ₂ O ₅	C, 60.76; H, 6.26; Cl, 8.15; N, 6.44	C, 60.79; H, 6.29; Cl, 7.98; N, 6.40
(R)- 26	$C_{22}H_{27}CIN_2O_5$	C, 60.76; H, 6.26; Cl, 8.15; N, 6.44	C, 60.85; H, 6.31; Cl, 8.06; N, 6.40
(R)- 27	$C_{23}H_{27}F_3N_2O_6$	C, 57.02; H, 5.62; F, 11.76; N, 5.78	C, 57.06; H, 5.61; F, 11.65; N, 5.75
(R)- 28	$C_{23}H_{27}F_3N_2O_6$	C, 57.02; H, 5.62; F, 11.76; N, 5.78	C, 57.10; H, 5.68; F, 11.63; N, 5.76
(R)- 29	C ₂₃ H ₂₉ ClN ₂ O ₅	C, 61.53; H, 6.51; Cl, 7.90; N, 6.24	C, 61.67; H, 6.57; Cl, 7.73; N, 6.32
(R)- 30	$C_{23}H_{29}CIN_2O_5$	C, 61.53; H, 6.51; Cl, 7.90; N, 6.24	C, 61.26; H, 6.47; Cl, 7.80; N, 6.17
(R)- 31	$C_{24}H_{29}F_3N_2O_6$	C, 57.83; H, 5.86; F, 11.43; N, 5.62	C, 57.74; H, 5.92; F, 11.18; N, 5.58
(R)- 32	$C_{24}H_{29}F_3N_2O_6$	C, 57.83; H, 5.86; F, 11.43; N, 5.62	C, 58.00; H, 5.95; F, 11.32; N, 5.56

Table S2. High Mass Spectrometry (ESI⁺)

Cmpd	Molecular Formula	Found	Calculated
(R)- 16	C ₁₄ H ₁₀ CINO	266.0357 [M + Na] ⁺	266.0349
(<i>R</i>)- 17	$C_{14}H_{10}CINO$	Not observed	266.0349
(<i>R</i>)- 18	$C_{15}H_{10}F_3NO_2$	316.0573 [M + Na] ⁺	316.0561
(R)- 19	$C_{15}H_{10}F_3NO_2$	316.0549 [M + Na] ⁺	316.0561
(R)- 20	C ₁₄ H ₁₄ CINO	270.0666 [M + Na] ⁺	270.0662
(R)- 21	C ₁₄ H ₁₄ CINO	248.0863 [M + H] ⁺	248.0842
(R)- 22	$C_{15}H_{14}F_{3}NO_{2}$	298.1070 [M + H] ⁺	298.1055
(R)- 23	$C_{15}H_{14}F_3NO_2$	298.1034 [M + H] ⁺	298.1055

EXPERIMENTAL SECTION

General Methods. Melting points were determined in open capillary tubes using a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra (IR) were run on an ATI Mattson Genesis FT-IR spectrometer. Absorption values are expressed in wavenumbers (cm⁻¹). Optical rotations were obtained on a Jasco P-1030 polarimeter at the sodium D line (589 nm) using a 1 dm path length cell. NMR spectra were obtained at 400 MHz (¹H) and 100 MHz (¹³C) using TMS as an internal standard. Chemical shifts (δ) are reported in parts per million (ppm) from tetramethylsilane. Low-resolution mass spectra were obtained with a BioToF-II-Bruker Daltonics spectrometer by Dr. S. Habibi at the University of North Carolina Department of Chemistry. The high-resolution mass spectrum was performed on a Bruker Apex-Q 12 Telsa FTICR spectrometer by Dr. S. Habibi. Microanalyses were performed by Atlantic Microlab, Inc. (Norcross, GA). Reactions were monitored by analytical thin-layer chromatography (TLC) plates (Aldrich, Cat # Z12272-6) and analyzed with 254 nm light. The reactions were purified by flash column chromatography using silica gel (Dynamic Adsorbents Inc., Cat # 02826-25). All chemicals and solvents were reagent grade and used as obtained from commercial sources without further purification. Yields reported are for purified products and were not optimized. Compounds were checked by TLC, ¹H and ¹³C NMR, MS, and elemental analyses. The analytical results are within ±0.40% of the theoretical value. The TLC, NMR and the analytical data confirmed the purity of the products was ≥95%.

Scheme 1. Synthesis of (*R*)-7 - (*R*)-10

General Procedure for the Preparation of 4-(Benzyloxy)benzonitrile Derivatives (Method A). A mixture of the desired benzylbromide (5–10 g), 4-cyanophenol (11) (1.0–1.2 equiv) and K_2CO_3 (4.0 equiv) was heated in acetone (200–400 mL) at reflux (5 h). The volatiles were evaporated and the residue was diluted in CH_2Cl_2 (300 mL), and then washed with H_2O (2×300 mL), dried (Na_2SO_4), and concentrated in vacuo to give the product as either a white solid or clear oil that was used without further purification.

General Procedure for the Preparation (4-(Benzyloxy)phenyl)methanamine Derivatives (Method B). A THF (30 mL) solution of the 4-(benzyloxy)benzonitrile derivative (5–10 g) was

added dropwise to a LiAlH₄ (3.0 equiv) suspension in THF (400 mL) at 0 °C. The mixture was stirred at room temperature (16 h) and H₂O (4 mL) was added dropwise at 0 °C followed by an aqueous NaOH solution (2 mL, 15% w/w), and then H₂O (4 mL). The mixture was stirred at room temperature (2 h), and the precipitate filtered over a Celite® pad and washed with either CH_2Cl_2 or EtOAc. The combined filtrates were concentrated in vacuo to obtain the desired product that was used without further purification.

General Procedure for the Mixed Anhydride Coupling Reaction (Method C). To a cooled anhydrous THF solution (-78 °C, dry ice acetone bath) of (R)-t-Boc-D-serine ((R)-24) ([C] ~ 0.1 M) were successively added N-methylmorpholine (NMM) (1.0-1.5 equiv), stirred for 2 min, isobutylchloroformate (IBCF) (1.1-1.3 equiv), stirred for 5 min, and then the desired benzylamine (1.0-1.2 equiv) in anhydrous THF. Upon addition the reaction mixture was allowed to warm to room temperature and further stirred (2-3 h). The salts were filtered over a Celite® pad and rinsed with THF and the filtrate was concentrated in vacuo. The residue obtained was purified by column chromatography on SiO₂ giving the desired product as a white solid.

Butoxycarbonyl)amino-3-methoxypropionamide Derivatives (Method D). To a CH₃CN solution of the 2-*N*-(*tert.*-butoxycarbonyl)amino-3-hydroxypropionamide derivative ([C] \sim 0.05–0.5 M) was successively added Ag₂O (5 equiv) and MeI (10 equiv) at room temperature. The reaction mixture was vigorously stirred at room temperature (2–3 d) under Ar while kept in the dark and then filtered through Celite® pad and the filtrate evaporated in vacuo. The residue was purified by column chromatography on SiO₂ to give the desired product.

General Procedure for the Preparation of (R)-Substituted N-Benzyl 2-N-(tert.-

General Procedure for the Deprotection and Acetylation of (R)-Substituted N-Benzyl 2-N-(tert.-Butoxycarbonyl)amino-3-methoxypropionamide Derivatives (Method E). A CH_2CI_2 solution (0.1–0.3 M) of the N-(tert.-butoxycarbonyl compound was treated with 4 M HCl in dioxane (3–4 equiv) at room temperature (2–12 h). The reaction mixture was evaporated in vacuo. The resulting residue was dissolved in CH_2CI_2 (0.1–0.3 M) and then triethylamine (2–3 equiv) and acetyl chloride (1.0–1.2 equiv) were carefully added at 0 °C and the resulting solution was stirred at room temperature (2–16 h). The resulting solution was washed with an aqueous 10% citric acid solution followed by a saturated $NaHCO_3$ solution. The organic layer was dried (Na_2SO_4) and concentrated in vacuo. The residue was purified by column chromatography on SiO_2 and/or recrystallized with EtOAc/hexanes.

Preparation of 4-(3'-Chlorobenzyloxy)benzonitrile¹ (16). Using Method A, 3-(chloro)benzylbromide (12) (9.00 g, 43.8 mmol), 4-cyanophenol (11) (6.26 g, 52.6 mmol) and K_2CO_3 (24.21 g, 175.2 mmol) gave 16 as a white solid (10.43 g, 98%): R_f = 0.45 (hexanes/EtOAc 9/1); mp 88-89 °C (lit.¹ mp 91 °C); IR (nujol) 2927, 2860, 2215, 1596, 1462, 1376, 1297, 1247, 1092, 997, 906, 833, 728 cm⁻¹; ¹H NMR (DMSO- d_6) δ 5.23 (s, CH₂O), 7.18–7.22 (m, 2 ArH), 7.42–7.54 (m, 4 ArH), 7.77–7.81 (m, 2 ArH); ¹³C NMR (DMSO- d_6) δ 68.7 (CH₂O), 103.2, 115.8 (ArC), 119.0 (CN), 126.2, 127.4, 128.0, 130.4, 133.2, 134.2, 138.7, 161.5 (ArC); HRMS (ESI⁺) 266.0357 [M + Na]⁺ (calcd for C₁₄H₁₀CINONa⁺ 266.0349).

Preparation of 4-(4'-Chlorobenzyloxy)benzonitrile¹ (17). Using Method A, 4-(chloro)benzylbromide (**13**) (10.00 g, 48.7 mmol), **11** (6.96 g, 58.4 mmol) and K_2CO_3 (26.92 g, 194.8 mmol) gave **17** as a white solid (11.60 g, 98%): $R_f = 0.45$ (hexanes/EtOAc 9/1); mp 99-100

°C (lit.¹ mp 101 °C); IR (nujol) 2923, 2865, 2212, 1587, 1469, 1368, 1282, 1102, 987, 838, 722 cm⁻¹; ¹H NMR (DMSO- d_6) δ 5.22 (s, CH₂O), 7.19 (d, J = 8.4 Hz, 2 ArH), 7.42–7.56 (m, 4 ArH), 7.78 (d, J = 8.0 Hz, 2 ArH); ¹³C NMR (DMSO- d_6) δ 68.8 (CH₂O), 103.2, 115.8 (ArC), 119.0 (CN), 128.5, 129.6, 132.7, 134.1, 135.1, 161.5 (ArC); HRMS (ESI⁺) no signal detected.

Preparation of 4-(3'-Trifluoromethoxybenzyloxy)benzonitrile (18). Using Method A, 3-(trifluoromethoxy)benzylbromide (14) (5.00 g, 19.6 mmol), 11 (2.80 g, 23.5 mmol) and K_2CO_3 (10.84 g, 78.4 mmol) gave 18 as a clear oil (5.65 g, 98%): R_f = 0.45 (hexanes/EtOAc 9/1); IR (nujol) 2927, 2854, 2216, 1598, 1463, 1384, 1252, 1175, 942, 841, 726 cm⁻¹; ¹H NMR (DMSO- d_6) δ 5.29 (s, CH₂O), 7.21 (d, J = 8.8 Hz, 2 ArH), 7.35 (d, J = 7.6 Hz, 1 ArH), 7.48–7.58 (m, 3 ArH), 7.80 (d, J = 8.8 Hz, 2 ArH); ¹³C NMR (DMSO- d_6) δ 68.6 (CH₂O), 103.3, 115.9 (ArC), 119.0 (CN), 120.1 (d, J = 254.9 Hz, OCF₃), 120.1, 120.5, 126.7, 130.6, 134.2, 139.0, 148.5, 161.5 (ArC); HRMS (ESI⁺) 316.0573 [M + Na]⁺ (calcd for C₁₅H₁₀F₃NO₂Na⁺ 316.0561).

Preparation of 4-(4'-Trifluoromethoxybenzyloxy)benzonitrile (19). Using Method A, 4-(trifluoromethoxy)benzylbromide (15) (5.00 g, 19.6 mmol), 11 (2.80 g, 23.5 mmol) and K_2CO_3 (10.84 g, 78.4 mmol) gave 19 as a white solid (5.49 g, 96%): R_f = 0.45 (hexanes/EtOAc 9/1); mp 48-49 °C (lit.² mp 59-61 °C); IR (nujol) 2921, 2860, 2219, 1601, 1505, 1457, 1378, 1258, 1171, 1031, 923, 835, 716 cm⁻¹; ¹H NMR (DMSO- d_6) δ5.26 (s, CH₂O), 7.21 (d, J = 8.4 Hz, 2 ArH), 7.41 (d, J = 8.4 Hz, 2 ArH), 7.61 (d, J = 8.4 Hz, 2 ArH), 7.80 (d, J = 8.4 Hz, 2 ArH); ¹³C NMR (DMSO- d_6) δ 68.7 (CH₂O), 103.2, 115.8 (ArC), 119.0 (CN), 120.1 (d, J = 254.2 Hz, OCF₃), 121.1, 129.7, 134.2, 135.7, 148.0, 161.6 (ArC); HRMS (ESI[†]) 316.0549 [M + Na][†] (calcd for C₁₅H₁₀F₃NO₂Na[†] 316.0561).

Preparation of (4-(3'-Chlorobenzyloxy)phenyl)methanamine (20). Using Method B, 4-(3'-chlorobenzyloxy)benzonitrile (16) (10.00 g, 41.0 mmol) and LiAlH₄ (4.67 g, 123.1 mmol) gave 20 as a white solid (8.04 g, 79%): R_f = 0.00 (hexanes/EtOAc 9/1); mp 55-56 °C; IR (nujol) 3355, 3262, 2919, 2860, 1605, 1510, 1464, 1378, 1299, 1241, 1173, 1075, 922, 839, 788 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.73 (br s, NH₂), 3.65 (s, NH₂CH₂), 5.23 (s, CH₂O), 6.94 (d, J = 8.4 Hz, 2 ArH), 7.24 (d, J = 8.4 Hz, 2 ArH), 7.36–7.50 (m, 4 ArH); ¹³C NMR (DMSO- d_6) δ 45.1 (NH₂CH₂), 68.2 (CH₂O), 114.4, 126.0, 127.1, 127.6, 128.1, 130.3, 133.1, 136.8, 139.9, 156.5 (ArC); HRMS (ESI⁺) 270.0666 [M + Na]⁺ (calcd for C₁₄H₁₄CINONa⁺ 270.0662).

Preparation of (4-(4'-Chlorobenzyloxy)phenyl)methanamine (21). Using Method B, 4-(4'-chlorobenzyloxy)benzonitrile (17) (10.00 g, 41.0 mmol) and LiAlH₄ (4.67 g, 123.1 mmol) gave 21 as a white solid (9.88 g, 97%): R_f = 0.00 (hexanes/EtOAc 9/1); mp 72-73 °C; IR (nujol) 3362, 3270, 2922, 2862, 1604, 1508, 1459, 1380, 1251, 1071, 928, 829, 776 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.84 (br s, NH₂), 3.65 (s, NH₂CH₂), 5.07 (s, CH₂O), 6.93 (d, J = 8.4 Hz, 2 ArH), 7.24 (d, J = 8.4 Hz, 2 ArH), 7.42–7.47 (m, 4 ArH); ¹³C NMR (DMSO- d_6) δ 45.1 (NH₂CH₂), 68.3 (CH₂O), 114.4, 128.1, 128.4, 129.3, 132.3, 136.3, 136.7, 156.6 (ArC); HRMS (ESI⁺) 248.0863 [M + H]⁺ (calcd for C₁₄H₁₄ClNOH⁺ 248.0842).

Preparation of (4-(3'-Trifluoromethoxybenzyloxy)phenyl)methanamine (22). Using Method B, 4-(3'-trifluoromethoxybenzyloxy)benzonitrile (18) (5.50 g, 18.8 mmol) and LiAlH₄ (2.14 g, 56.3 mmol) gave 22 as a clear oil (4.46 g, 80%): R_f = 0.00 (hexanes/EtOAc 9/1); IR (nujol) 3357, 3281, 2932, 2858, 1603, 1511, 1467, 1239, 1165, 1032, 939, 837, 742 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.70 (br s, NH₂), 3.64 (s, NH₂CH₂), 5.15 (s, CH₂O), 6.95 (d, J = 8.2 Hz, 2 ArH), 7.24 (d, J = 8.2 Hz, 2 ArH),

7.31 (d, J = 7.6 Hz, 1 Ar**H**), 7.43–7.53 (m, 3 Ar**H**); ¹³C NMR (DMSO- d_6) δ 45.0 (NH₂CH₂), 68.2 (CH₂O), 114.4, 119.7 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 120.1, 126.4, 128.1, 130.4, 136.9, 140.2, 148.4, 156.5 (ArC); HRMS (ESI⁺) 298.1070 [M + H]⁺ (calcd for C₁₅H₁₄F₃NO₂H⁺ 298.1055).

Preparation of (4-(4'-Trifluoromethoxybenzyloxy)phenyl)methanamine (23). Using Method B, 4-(4'-trifluoromethoxybenzyloxy)benzonitrile (19) (5.50 g, 18.8 mmol) and LiAlH₄ (2.14 g, 56.3 mmol) gave 23 as a white solid (4.52 g, 81%): R_f = 0.00 (hexanes/EtOAc 9/1); mp 77-78 °C; IR (nujol) 3364, 3280, 2927, 2862, 1605, 1513, 1459, 1379, 1228, 1173, 1079, 1017, 924, 823, 754 cm⁻¹; ¹H NMR (DMSO- d_6) δ1.75 (br s, NH₂), 3.64 (s, NH₂CH₂), 5.12 (s, CH₂O), 6.94 (d, J = 8.8 Hz, 2 ArH), 7.24 (d, J = 8.4 Hz, 2 ArH), 7.38 (d, J = 8.8 Hz, 2 ArH), 7.57 (d, J = 8.4 Hz, 2 ArH); ¹³C NMR (DMSO- d_6) δ45.1 (NH₂CH₂), 68.2 (CH₂O), 114.4 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 120.1, 128.1, 129.4, 136.8, 136.8, 147.8, 156.6 (ArC); HRMS (ESI⁺) 298.1034 [M + H]⁺ (calcd for C₁₅H₁₄F₃NO₂H⁺ 298.1055).

Preparation of (*R*)-*N*-4′-(3″-Chlorobenzyloxy)benzyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-25). Using Method C, 20 (7.24 g, 29.3 mmol), (*R*)-24 (5.00 g, 24.4 mmol), NMM (4.02 mL, 36.6 mmol), and IBCF (4.02 mL, 30.7 mmol) gave (*R*)-25 as a white solid (8.82 g, 83%): R_f = 0.40 (hexanes/EtOAc 1/2); mp 83-84 °C; [α]²⁶_D +16.5° (*c* 1.3, CHCl₃); IR (nujol) 3324, 2951, 2861, 1690, 1650, 1526, 1458, 1376, 1243, 1170, 1011, 778, 679 cm⁻¹; ¹H NMR (DMSO- d_6) δ1.39 (s, (CH₃)₃), 3.53-3.61 (br m, CH₂OH), 3.98–4.02 (br m, CH), 4.17–4.29 (m, CH₂N), 4.84 (t, *J* = 5.8 Hz, OH), 5.11 (s, OCH₂), 6.63 (d, *J* = 8.0 Hz, NHCH), 6.93 (d, *J* = 8.8 Hz, 2 ArH), 7.18 (d, *J* = 8.4 Hz, 2 ArH), 7.36–7.49 (m, 4 ArH), 8.21–8.24 (br m, NHCH₂); ¹³C NMR (DMSO- d_6) δ28.2 ((CH₃)₃), 41.7 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 68.2 (OCH₂), 78.2

 $(\mathbf{C}(\mathsf{CH}_3)_3)$, 114.5, 126.0, 127.1, 127.6, 128.3, 130.3, 131.8, 133.1, 139.8 (Ar**C**), 155.2 (N**C**(O)O), 156.9 (Ar**C**), 170.3 (**C**(O)); LRMS (ESI⁺) 435.1 [M + H]⁺ (calcd for $C_{22}H_{27}CIN_2O_5H^+$ 435.1); Anal. Calcd. for $C_{22}H_{27}CIN_2O_5$: C, 60.76; H, 6.26; Cl, 8.15; N, 6.44. Found: C, 60.79; H, 6.29; Cl, 7.98; N, 6.40.

Preparation of (*R*)-*N*-4′-(4″-Chlorobenzyloxy)benzyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-26). Using Method C, 21 (4.36 g, 17.6 mmol), (*R*)-24 (3.00 g, 14.7 mmol), NMM (2.42 mL, 22.0 mmol), and IBCF (2.42 mL, 18.6 mmol) gave (*R*)-26 as a white solid (5.60 g, 88%): R_f = 0.40 (hexanes/EtOAc 1/2); mp 119-121 °C; [α]²⁶_D +16.4° (*c* 1.1, CHCl₃); IR (nujol) 3319, 2938, 2859, 1656, 1538, 1466, 1347, 1241, 1173, 1009, 834, 769, 683 cm⁻¹; ¹H NMR (DMSO- d_6) δ1.39 (s, (CH₃)₃), 3.57-3.62 (br m, CH₂OH), 3.97–4.03 (br m, CH), 4.13–4.28 (m, CH₂N), 4.83 (t, *J* = 5.6 Hz, OH), 5.09 (s, OCH₂), 6.63 (d, *J* = 8.0 Hz, NHCH), 6.92 (d, *J* = 8.8 Hz, 2 ArH), 7.17 (d, *J* = 8.4 Hz, 2 ArH), 7.42–7.47 (m, 4 ArH), 8.20–8.24 (br m, NHCH₂); ¹³C NMR (DMSO- d_6) δ28.2 ((CH₃)₃), 41.5 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 68.3 (OCH₂), 78.2 (C(CH₃)₃), 114.5, 128.3, 128.4, 129.3, 131.7, 132.3, 136.3 (ArC), 155.2 (NC(O)O), 157.0 (ArC), 170.3 (C(O)); LRMS (ESI[†]) 435.2 [M + H][†] (calcd for C₂₂H₂₇ClN₂O₅H⁺ 435.2); Anal. Calcd. for C₂₂H₂₇ClN₂O₅: C, 60.76; H, 6.26; Cl, 8.15; N, 6.44. Found: C, 60.85; H, 6.31; Cl, 8.06; N, 6.40.

Preparation of (R)-N-4'-(3"-Trifluoromethoxybenzyloxy)benzyl 2-N-(tert.-

Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-27). Using Method C, 22 (4.40 g, 14.8 mmol), (*R*)-24 (2.50 g, 12.2 mmol), NMM (2.01 mL, 18.3 mmol), and IBCF (2.01 mL, 15.5 mmol) gave (*R*)-27 as a white solid (4.96 g, 83%): R_f = 0.40 (hexanes/EtOAc 1/2); mp 97-98 °C; [α]²⁶_D +16.8° (*c* 1.0, CHCl₃); IR (nujol) 3326, 2945, 2866, 1691, 1645, 1537, 1455, 1378, 1289, 1174,

1029, 839, 734, 645 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.39 (s, (CH₃)₃), 3.57-3.63 (br m, CH₂OH), 3.98–4.03 (br m, CH), 4.18–4.30 (m, CH₂N), 4.84 (t, J = 5.6 Hz, OH), 5.16 (s, OCH₂), 6.64 (d, J = 8.0 Hz, NHCH), 6.95 (d, J = 8.0 Hz, 2 ArH), 7.19 (d, J = 8.4 Hz, 2 ArH), 7.31 (d, J = 7.6 Hz, 1 ArH), 7.43–7.55 (m, 3 ArH), 8.21–8.25 (br m, NHCH₂); ¹³C NMR (DMSO- d_6) δ 28.1 ((CH₃)₃), 41.5 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 68.2 (OCH₂), 78.2 (C(CH₃)₃), 114.6, 118.8 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 120.1, 126.4, 128.3, 130.4, 131.9, 140.2, 148.5 (ArC), 155.2 (NC(O)O), 156.9 (ArC), 170.4 (C(O)); LRMS (ESI⁺) 485.2 [M + H]⁺ (calcd for C₂₃H₂₇F₃N₂O₆H⁺ 485.2); Anal. Calcd. for C₂₃H₂₇F₃N₂O₆: C, 57.02; H, 5.62; F, 11.76; N, 5.78. Found: C, 57.06; H, 5.61; F, 11.65; N, 5.75.

Preparation of (R)-N-4'-(4"-Trifluoromethoxybenzyloxy)benzyl 2-N-(tert.-

Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-28). Using Method C, 23 (4.15 g, 14.0 mmol), (*R*)-24 (2.50 g, 12.2 mmol), NMM (2.01 mL, 18.3 mmol), and IBCF (2.01 mL, 15.5 mmol) gave (*R*)-28 as a white solid (4.45 g, 75%): R_f = 0.40 (hexanes/EtOAc 1/2); mp 96-97 °C; [α]²⁶_D +16.5° (*c* 1.2, CHCl₃); IR (nujol) 3339, 2912, 2861, 1684, 1639, 1524, 1457, 1377, 1294, 1242, 1169, 1046, 824, 721, 627 cm⁻¹; ¹H NMR (DMSO- d_6) δ1.39 (s, (CH₃)₃), 3.56-3.61 (br m, CH₂OH), 3.98-4.03 (br m, CH), 4.17-4.29 (m, CH₂N), 4.84 (t, J = 5.6 Hz, OH), 5.13 (s, OCH₂), 6.63 (d, J = 8.0 Hz, NHCH), 6.94 (d, J = 8.4 Hz, 2 ArH), 7.19 (d, J = 8.4 Hz, 2 ArH), 7.37 (d, J = 8.4 Hz, 2 ArH), 7.57 (d, J = 8.4 Hz, 2 ArH), 8.21-8.25 (br m, NHCH₂); ¹³C NMR (DMSO- d_6) δ28.1 ((CH₃)₃), 41.5 (NCH₂), 57.0 (OCH₂CH), 61.9 (OCH₂CH), 68.2 (OCH₂), 78.2 (C(CH₃)₃), 114.5 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 121.0, 128.3, 129.4, 131.8, 136.8, 147.8 (ArC), 155.2 (NC(O)O), 157.0 (ArC), 170.3 (C(O)); LRMS (ESI⁺) 485.2 [M + H]⁺ (calcd for C₂₃H₂₇F₃N₂O₆+ 485.2); Anal. Calcd. for C₂₃H₂₇F₃N₂O₆: C, 57.02; H, 5.62; F, 11.76; N, 5.78. Found: C, 57.10; H, 5.68; F, 11.63; N, 5.76.

Preparation of (*R*)-*N*-4′-(3″-Chlorobenzyloxy)benzyl 2-*N*-(*tert*.-Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-29). Using Method D, (*R*)-25 (8.60 g, 19.8 mmol), Ag₂O (22.95 g, 99.0 mmol) and CH₃I (12.36 mL, 198.1 mmol) gave (*R*)-29 as a white solid (8.34 g, 94%): R_f = 0.45 (hexanes/EtOAc 1/1); mp 110-111 °C; [α]²⁶_D −16.1° (*c* 1.1, CHCl₃); IR (nujol) 3310, 2950, 2856, 1646, 1527, 1457, 1375, 1247, 1169, 1091, 1049, 859, 777, 682 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.38 (s, (CH₃)₃), 3.23 (s, OCH₃), 3.45-3.49 (br m, CH₂OH), 4.15–4.27 (m, CH, CH₂N), 5.11 (s, OCH₂), 6.82 (d, J = 8.0 Hz, NHCH), 6.94 (d, J = 8.4 Hz, 2 ArH), 7.17 (d, J = 8.0 Hz, 2 ArH), 7.36–7.49 (m, 4 ArH), 8.33 (t, J = 5.8 Hz, NHCH₂); ¹³C NMR (DMSO- d_6) δ 28.1 ((CH₃)₃), 41.5 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 68.2 (OCH₂), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 114.5, 126.0, 127.1, 127.6, 128.3, 130.3, 131.7, 133.1, 139.8 (ArC), 155.2 (NC(O)O), 156.9 (ArC), 169.8 (C(O)); LRMS (ESI⁺) 471.2 [M + Na]⁺ (calcd for C₂₃H₂₉CIN₂O₅Na⁺ 471.2); Anal. Calcd. for C₂₃H₂₉CIN₂O₅: C, 61.53; H, 6.51; Cl, 7.90; N, 6.24. Found: C, 61.67; H, 6.57; Cl, 7.73; N, 6.32.

Preparation of (*R*)-*N*-4′-(4″-Chlorobenzyloxy)benzyl 2-*N*-(*tert.*-Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-30). Using Method D, (*R*)-26 (5.40 g, 12.4 mmol), Ag₂O (14.41 g, 62.2 mmol) and CH₃I (7.76 mL, 124.4 mmol) gave (*R*)-30 as a white solid (5.14 g, 92%): R_f = 0.45 (hexanes/EtOAc 1/1); mp 95-96 °C; [α]²⁶_D −17.5° (*c* 1.0, CHCl₃); IR (nujol) 3321, 2959, 2864, 1650, 1531, 1454, 1378, 1259, 1178, 1087, 934, 829, 754, 667 cm⁻¹; ¹H NMR (DMSO- d_6) δ1.38 (s, (CH₃)₃), 3.23 (s, OCH₃), 3.45-3.49 (br m, CH₂OCH₃), 4.15–4.26 (m, CH, CH₂N), 5.08 (s, OCH₂), 6.81 (d, J = 8.0 Hz, NHCH), 6.92 (d, J = 7.6 Hz, 2 ArH), 7.16 (d, J = 8.0 Hz, 2 ArH), 7.42–7.47 (m, 4 ArH), 8.32 (t, J = 5.8 Hz, NHCH₂); ¹³C NMR (DMSO- d_6) δ28.1 ((CH₃)₃), 41.5 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 68.3 (OCH₂), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 114.6, 128.3, 128.4, 129.3, 131.6, 132.3, 136.2 (ArC), 155.2 (NC(O)O), 157.0 (ArC), 169.8 (C(O)); LRMS (ESI[†]) 449.2 [M + H]⁺ (calcd for

 $C_{23}H_{29}CIN_2O_5H^+$ 449.2); Anal. Calcd. for $C_{23}H_{29}CIN_2O_5$: C, 61.53; H, 6.51; Cl, 7.90; N, 6.24. Found: C, 61.26; H, 6.47; Cl, 7.80; N, 6.17.

Preparation of (R)-N-4'-(3"-Trifluoromethoxybenzyloxy)benzyl 2-N-(tert.-

Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-31). Using Method D, (*R*)-27 (4.80 g, 9.9 mmol), Ag₂O (11.50 g, 49.6 mmol) and CH₃I (6.19 mL, 99.2 mmol) gave (*R*)-31 as a white solid (4.65 g, 94%): R_f = 0.45 (hexanes/EtOAc 1/1); mp 84-86 °C; [α]²⁶_D –15.3° (*c* 1.1, CHCl₃); IR (nujol) 3307, 2964, 2859, 1654, 1521, 1457, 1387, 1222, 1169, 1063, 872, 767, 691 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ1.39 (s, (CH₃)₃), 3.24 (s, OCH₃), 3.47-3.51 (br m, CH₂OCH₃), 4.16–4.28 (m, CH, CH₂N), 5.16 (s, OCH₂), 6.82 (d, J = 8.0 Hz, NHCH), 6.95 (d, J = 7.6 Hz, 2 ArH), 7.18 (d, J = 8.4 Hz, 2 ArH), 7.31 (d, J = 8.0 Hz, 1 ArH), 7.43–7.55 (m, 3 ArH), 8.34 (t, J = 5.8 Hz, NHCH₂); ¹³C NMR (DMSO-*d*₆) δ28.1 ((CH₃)₃), 41.5 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 68.2 (OCH₂), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 114.6, 119.7 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 120.1, 126.4, 128.3, 130.4, 131.8, 140.1, 148.5 (ArC), 155.2 (NC(O)O), 156.9 (ArC), 169.9 (C(O)); LRMS (ESI[†]) 449.3 [M + H][†] (calcd for C₂₄H₂₉F₃N₂O₆H⁺ 449.3); Anal. Calcd. for C₂₄H₂₉F₃N₂O₆: C, 57.83; H, 5.86; F, 11.43; N, 5.62. Found: C, 57.74; H, 5.92; F, 11.18; N, 5.58.

Preparation of (R)-N-4'-(4"-Trifluoromethoxybenzyloxy)benzyl 2-N-(tert.-

Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-32). Using Method D, (*R*)-28 (4.30 g, 8.9 mmol), Ag₂O (10.29 g, 44.4 mmol) and CH₃I (5.54 mL, 88.8 mmol) gave (*R*)-32 as a white solid (3.84 g, 87%): R_f = 0.45 (hexanes/EtOAc 1/1); mp 97-98 °C; [α]²⁶_D -15.8° (*c* 1.5, CHCl₃); IR (nujol) 3322, 3027, 2928, 2846, 1658, 1519, 1442, 1378, 1235, 1178, 1079, 1054, 839, 747, 679 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.38 (s, (CH₃)₃), 3.23 (s, OCH₃), 3.44-3.51 (br m, CH₂OCH₃), 4.14–4.27 (m,

CH, CH₂N), 5.13 (s, OCH₂), 6.82 (d, J = 8.0 Hz, NHCH), 6.94 (d, J = 8.8 Hz, 2 ArH), 7.17 (d, J = 8.4 Hz, 2 ArH), 7.38 (d, J = 8.0 Hz, 2 ArH), 7.56 (d, J = 8.4 Hz, 2 ArH), 8.33 (t, J = 6.0 Hz, NHCH₂); ¹³C NMR (DMSO- d_6) δ 28.1 ((CH₃)₃), 41.5 (NCH₂), 54.3 (OCH₂CH), 58.1 (OCH₃), 68.2 (OCH₂), 72.0 (OCH₂CH), 78.2 (C(CH₃)₃), 114.5 (ArC), 120.1 (q, J = 254.9 Hz, OCF₃), 121.0, 128.3, 129.4, 131.6, 136.7, 147.8 (ArC), 155.2 (NC(O)O), 157.0 (ArC), 169.8 (C(O)); LRMS (ESI⁺) 449.2 [M + H]⁺ (calcd for C₂₄H₂₉F₃N₂O₆H⁺ 449.2); Anal. Calcd. for C₂₄H₂₉F₃N₂O₆: C, 57.83; H, 5.86; F, 11.43; N, 5.62. Found: C, 58.00; H, 5.95; F, 11.32; N, 5.56.

Preparation of (R)-N-4'-(3"-Chlorobenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((R)-7). Using Method E, (R)-29 (8.18 g, 18.26 mmol) and 4 M HCl (15.98 mL, 63.9 mmol), followed by Et₃N (5.60 mL, 40.2 mmol) and AcCl (1.42 mL, 20.1 mmol) gave (R)-7 as a white solid (5.86 g, 82%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 170-172 °C; $[\alpha]^{26}_D = 18.1$ ° (c 1.2, CHCl₃); IR (nujol) 3282, 3082, 2923, 2860, 1634, 1551, 1456, 1378, 1246, 1130, 1058, 980, 777, 716 cm⁻¹ ¹; ¹H NMR (CDCl₃) δ 2.00 (s, C(O)CH₃), 3.35 (s, OCH₃), 3.42–3.46 (m, CHH'OCH₃), 3.77 (dd, J = 4.0, 9.0 Hz, CHH'OCH₃), 4.32-4.43 (m, CH₂N), 4.53-4.58 (m, CH), 5.01 (s, OCH₂), 6.55 (d, J = 6.4 Hz, NHCH), 6.83-6.91 (m, 2 ArH, NHCH₂), 7.18 (d, J = 8.4 Hz, 2 ArH), 7.26-7.42 (m, 4 ArH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (R)- $\mathbf{7}$ gave only one signal for the acetyl methyl and one signal for the ether methyl protons; 13 C NMR (CDCl₃) δ 23.4 (C(O)CH₃), 43.2 (NCH₂), 52.6 (OCH₂CH), 59.2 (OCH₃), 69.4 (OCH₂), 72.0 (OCH₂CH), 115.2, 125.5, 127.6, 128.3, 129.1, 130.1, 130.8, 134.7, 139.2, 158.0 (ArC), 170.1, 170.5 (2 C(O)); LRMS (ESI⁺) 413.2 [M + Na]⁺(calcd for $C_{20}H_{23}CIN_2O_4Na^+$ 413.2); Anal. Calcd. for $C_{20}H_{23}CIN_2O_4$: C, 61.46; H, 5.93; Cl, 9.07; N, 7.17. Found: C, 61.55; H, 5.97; Cl, 8.89; N, 7.17.

Preparation of (*R*)-*N*-4′-(4″-Chlorobenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((*R*)-8). Using Method E, (*R*)-30 (4.80 g, 10.7 mmol) and 4 M HCl (9.38 mL, 37.5 mmol), followed by Et₃N (3.28 mL, 23.5 mmol) and AcCl (0.83 mL, 11.8 mmol) gave (*R*)-8 as a white solid (3.65 g, 87%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 180-181 °C; [α]²⁶_D –17.9° (*c* 1.1, CHCl₃); IR (nujol) 3280, 3103, 2924, 2859, 1635, 1553, 1458, 1375, 1240, 1098, 1047, 815, 727, 608 cm⁻¹; ¹H NMR (CDCl₃) δ1.99 (s, C(O)CH₃), 3.35 (s, OCH₃), 3.42–3.46 (m, CHH'OCH₃), 3.76 (dd, *J* = 4.0, 9.0 Hz, CHH'OCH₃), 4.31–4.42 (m, CH₂N), 4.54–4.59 (m, CH), 5.00 (s, OCH₂), 6.58 (d, *J* = 6.4 Hz, NHCH), 6.85–6.92 (m, 2 ArH, NHCH₂), 7.17 (d, *J* = 8.0 Hz, 2 ArH), 7.34 (s, 4 ArH), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-8 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; ¹³C NMR (CDCl₃) δ23.3 (C(O)CH₃), 43.2 (NCH₂), 52.6 (OCH₂CH), 59.2 (OCH₃), 69.4 (OCH₂), 72.1 (OCH₂CH), 115.2, 128.9, 128.9, 129.0, 130.7, 133.9, 135.6, 158.1 (ArC), 170.1, 170.5 (2 C(O)); LRMS (ESI⁺) 391.2 [M + H]⁺ (calcd for C₂₀H₂₃ClN₂O₄H⁺ 391.2); Anal. Calcd. for C₂₀H₂₃ClN₂O₄: C, 61.46; H, 5.93; Cl, 9.07; N, 7.17. Found: C, 61.75; H, 5.86; Cl, 9.15; N, 7.11.

Preparation of (*R*)-*N*-4′-(3″-Trifluoromethoxybenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((*R*)-9). Using Method E, (*R*)-31 (4.50 g, 9.0 mmol) and 4 M HCl (7.90 mL, 31.6 mmol), followed by Et₃N (2.77 mL, 19.9 mmol) and AcCl (0.70 mL, 9.9 mmol) gave (*R*)-9 as a white solid (3.50 g, 88%): R_f = 0.40 (MeOH/CH₂Cl₂ 1/20); mp 139-140 °C; [α]²⁶_D −15.1° (*c* 1.0, CHCl₃); IR (nujol) 3281, 3081, 2924, 2860, 1632, 1550, 1456, 1381, 1281, 1141, 1060, 974, 822, 710, 618 cm⁻¹; ¹H NMR (CDCl₃) δ1.98 (s, C(O)CH₃), 3.35 (s, OCH₃), 3.43–3.47 (m, CHH'OCH₃), 3.76 (dd, *J* = 4.0, 9.2 Hz, CHH'OCH₃), 4.32–4.43 (m, CH₂N), 4.56–4.61 (m, CH), 5.04 (s, OCH₂), 6.63 (d, *J* = 6.8 Hz, NHCH), 6.89–6.97 (m, 2 ArH, NHCH₂), 7.18 (d, *J* = 8.4 Hz, 2 ArH), 7.29–7.42 (m,

4 Ar**H**), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-**9** gave only one signal for the acetyl methyl and one signal for the ether methyl protons; 13 C NMR (CDCl₃) δ 23.3 (C(O)CH₃), 43.1 (NCH₂), 52.7 (OCH₂CH), 59.2 (OCH₃), 69.2 (OCH₂), 72.1 (OCH₂CH), 115.2, 119.3, 120.4 (Ar**C**), 120.6 (q, J = 256.4 Hz, OCF₃), 125.6, 129.1, 130.1, 130.9, 139.5, 149.6, 158.0 (Ar**C**), 170.1, 170.5 (2 **C**(O)); LRMS (ESI⁺) 441.1 [M + H]⁺ (calcd for C₂₁H₂₃F₃N₂O₅H⁺ 441.1); Anal. Calcd. for C₂₁H₂₃F₃N₂O₅: C, 57.27; H, 5.26; F, 12.94; N, 6.36. Found: C, 57.08; H, 5.20; F, 12.88; N, 6.30.

Preparation of (R)-N-4'-(4"-Trifluoromethoxybenzyloxy)benzyl 2-Acetamido-3-

methoxypropionamide ((R)-10). Using Method E, (R)-32 (3.68 g, 7.4 mmol) and 4 M HCl (6.47 mL, 25.9 mmol), followed by Et₃N (2.27 mL, 16.3 mmol) and AcCl (0.58 mL, 8.1 mmol) gave (R)-**10** as a white solid (3.10 g, 95%): $R_f = 0.40$ (MeOH/CH₂Cl₂ 1/20); mp 172-173 °C; $[\alpha]^{26}_{D} - 16.0^{\circ}$ (c 1.1, CHCl₃); IR (nujol) 3281, 3102, 2923, 2860, 1635, 1552, 1457, 1378, 1275, 1233, 1148, 1021, 835, 730, 609 cm⁻¹; ¹H NMR (CDCl₃) δ 1.99 (s, C(O)CH₃), 3.35 (s, OCH₃), 3.43–3.47 (m, CHH'OCH₃), 3.76 (dd, J = 4.0, 9.2 Hz, CHH'OCH₃), 4.32–4.43 (m, CH₂N), 4.56–4.60 (m, CH), 5.03 (s, OCH₂), 6.61 (d, J = 6.4 Hz, NHCH), 6.89-6.94 (m, 2 ArH, NHCH₂), 7.18 (d, J = 8.4 Hz, 2 ArH),7.22 (d, J = 8.4 Hz, 2 ArH), 7.44 (d, J = 8.4 Hz, 2 ArH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (R)-10 gave only one signal for the acetyl methyl and one signal for the ether methyl protons; 13 C NMR (CDCl₃) δ 23.3 (C(O)CH₃), 43.1 (NCH₂), 52.7 (OCH₂CH), 59.2 (OCH₃), 69.3 (OCH₂), 72.0 (OCH₂CH), 115.1 (ArC), 120.6 (q, J = 255.7 Hz, OCF₃), 121.3, 129.0, 129.1, 130.8, 135.8, 149.0, 158.1 (ArC), 170.1, 170.5 (2 C(O)); LRMS (ESI⁺) 441.1 [M + H]⁺ (calcd for $C_{21}H_{23}F_3N_2O_5H^+$ 441.1); Anal. Calcd. for $C_{21}H_{23}F_3N_2O_5$: C, 57.27; H, 5.26; F, 12.94; N, 6.36. Found: C, 57.35; H, 5.28; F, 12.78; N, 6.38.

Scheme S1. Synthesis of Safinamide ((*S*)-**3**).

Preparation of 4-((3'-Fluoro)benzyloxy)benzaldehyde (37).³ To an acetone solution (250 mL) of 4-hydroxybenzaldehyde (35) (4.00 g, 32.5 mmol) was added 3-fluorobenzylbromide (36) (4.24 mL, 34.1 mmol) and K_2CO_3 (17.96 g, 129.9 mmol), and stirred at reflux (60 °C, 2 h). The reaction mixture was concentrated in vacuo, and then H_2O (50 mL) and CH_2CI_2 (50 mL) were added, and the mixture was extracted with CH_2CI_2 (3 X 50 mL)). The combined organic layers were dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash liquid chromatography on SiO_2 (EtOAc/hexanes 1/9) to yield 37 as a white solid (6.18 g, 83%): R_f = 0.50 (EtOAc/hexanes, 1/5); mp 45–46 °C (lit.³ mp 40–41 °C); ¹H NMR (CDCl₃) δ 5.15 (s, OCH₂, 2H), 7.00-7.22 (m, 5 ArH), 7.30-7.40 (m, 1 ArH), 7.80-7.90 (m, 2 ArH), 9.90 (s, C(O)H, 1H); ¹³C NMR (CDCl₃) δ 69.5 (CH₂O), 114.4 (d, J = 22.1 Hz, ArC), 115.2 (ArC), 115.3 (d, J (est) = 17.6 Hz, one peak is overlapped with near peak, ArC), 122.9, 130.5, 130.5 (d, J = 7.8 Hz, ArC), 132.2, 138.6 (d, J = 7.2 Hz, ArC), 163.1 (d, J = 245.1 Hz, ArC), 163.5 (ArC), 190.9 (C(O)H).

Preparation of (*S*)-2-((4'-(3"-fluorobenzoxy)benzyl)amino)propanamide (38). To a MeOH solution of L-alanine amide hydrochloride (0.32 g, 2.61 mmol) was added EtN₃ (453 μ L, 3.26

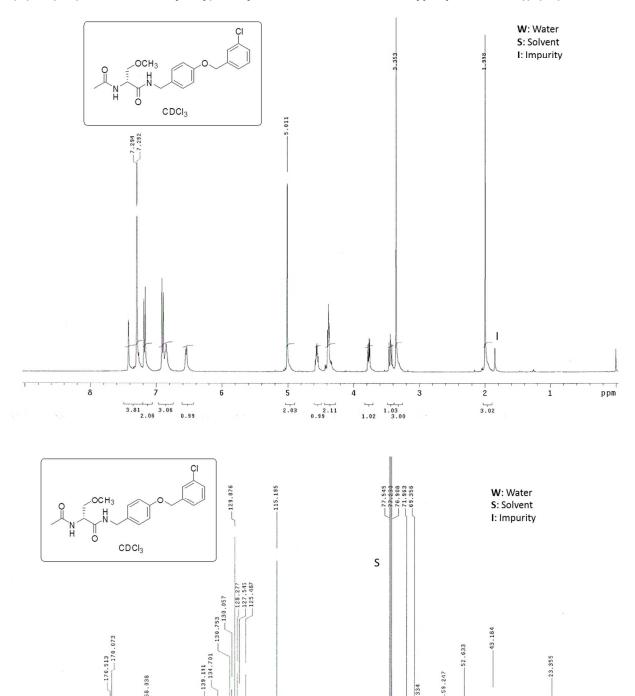
mmol) and 37 (0.5 g, 2.17 mmol) successively. The reaction solution was allowed to stir at room temperature (2 h) and concentrated in vacuo. The residue was dissolved in EtOAc (100 mL) and washed with H₂O (3 X 100 mL), and then dried over anhydrous Na₂SO₄. The organic layer was concentrated in vacuo and dissolved in MeOH (25 mL). The resulting solution was treated with sodium cyanoborohydride (NaBH₃CN) (215.5 mg, 3.26 mmol) at 0 °C and allowed to stir at room temperature (16 h). The resulting solution was concentrated in vacuo, disoolved in EtOAc (100 mL), and washed with H₂O (3 X 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash liquid chromatography on SiO₂ (EtOAc) to yield **38** as a white solid (0.39 g, 60%); $R_f = 0.10$ (EA); mp 123-125 °C; ¹H NMR (DMSO- d_6) δ 1.11 (dd, J = 5.6, 1.3 Hz, CH₃), 2.26 (br s, NH), 2.99 (q, J = 6.4 Hz, CH), 3.46 (d, J =13.2 Hz, NHCHH'), 3.60 (d, J = 13.2 Hz, NHCHH'), 5.11 (s, OCH₂), 6.93-7.29 (m, 7 ArH, NH₂), 7.40-7.47 (m, 1 Ar**H**); 13 C NMR (CDCl₃) δ 19.7 (**C**H₃), 51.9 (NH**C**H₂), 57.6 (C(O)**C**HNH₂), 69.2 (O**C**H₂), 114.2 (d, J = 21.9 Hz, ArC), 114.8 (d, J = 21.0 Hz, ArC), 114.9 (ArC), 122.7 (d, J = 2.8 Hz, ArC), 129.3 (ArC), 130.2 (d, J = 8.2 Hz, ArC), 132.3 (ArC), 139.7 (d, J = 7.2 Hz, ArC), 163.0 (d, J = 244.7Hz, ArC), 178.4 (C(O)), the remaining signal was not detected and is believed to overlap with nearby peaks

Preparation of (*S*)-2-((4'-(3"-Fluorobenzoxy)benzyl)amino)propanamide, methanesulfonate ((*S*)-3). To an EtOAc solution (10 mL) of **38** (0.30 g, 1.0 mmol) was added methanesulfonic acid (78 μ L, 1.2 mmol) at 50 °C (1 h). The reaction mixture was cooled down to room temperature and filtered. The solid was washed with EtOAc (100 mL) and dried in vacuo to yield (*S*)-**3** as a white solid (0.36 g, 90%); mp 213 °C (dec) (lit.⁴ mp 210 °C (dec)); [α]²⁶_D +12.9° (c 1.0, acetic acid (lit.⁴ [α]²⁵_D +12.9°(c 1.1, acetic acid); ¹H NMR (300 MHz, DMSO- d_6) δ 1.42 (d, J = 6.9 Hz, CHCH₃),

2.31 (s, CH₃SO₃H), 3.68–3.75 (m, CHCH₃), 3.97–4.07 (m, CH₂NH), 5.17 (s, OCH₂), 7.06–7.09 (m, 2 ArH), 7.13–7.20 (m, 1 ArH), 7.26–7.30 (m, 2 ArH), 7.39–7.48 (m, 3 ArH), 7.63 (s, C(O)NHH'), 7.90 (s, C(O)NHH'), 8.98 (br s, NH₂); 13 C NMR (300 MHz, DMSO- d_6) δ 16.4 (CHCH₃), 48.5 (CH₂NH), 54.8 (CHCH₃), 68.8 (OCH₂), 114.6 (d, J = 21.7 Hz, ArC), 115.0 (d, J = 20.8 Hz, ArC), 115.4 (ArC), 123.9 (d, J = 2.6 Hz, ArC), 124.4 (ArC), 131.0 (d, J = 8.3 Hz, ArC), 132.1 (ArC), 140.3 (d, J = 7.4 Hz, ArC), 159.0 (ArC), 162.7 (d, J = 242.2 Hz, ArC-F), 171.0 (C(O)), the remaining signal was not detected and is believed to overlap with the DMSO- d_6 peaks.

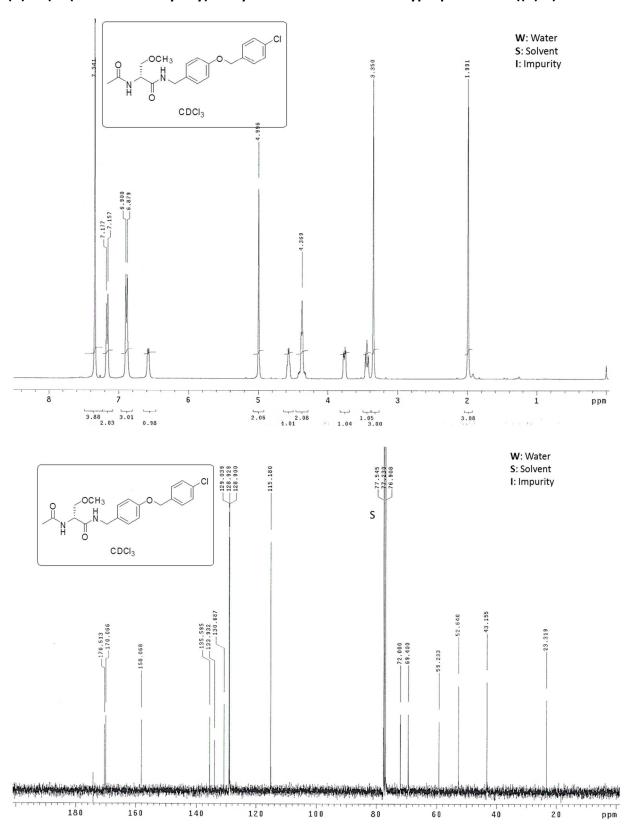
Footnotes and Author Current Address

^aCenter for Neuro-Medicine, Korea Institute of Science and Technology, Seoul, Korea

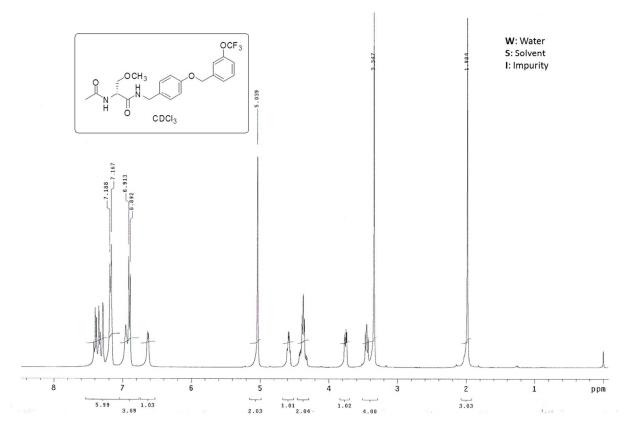

References

- Lebreton, L., Curet, O., Gueddari, S., Mazouz, F., Bernard, S., Burstein, C., and Milcent, R. (1995) Selective and potent monoamine oxidase type B inhibitors: 2-substituted 5-aryltetrazole derivatives. *J. Med. Chem.* 38, 4786–4792.
- Lee, H., Gold, A. S., Yang, X.-F., Khanna, R., and Kohn, H. (2013)
 Benzyloxybenzylammonium chlorides: simple amine salts that display anticonvulsant activity. *Bioorg. & Med. Chem.* 21, 7655-7662.
- 3. Salome, C., Salome-Grosjean, E., Park, K. D., Morieux, P., Swendiman, R., DeMarco, E., Stables, J. P., and Kohn, H. 2010 Synthesis and anticonvulsant activities of (*R*)-*N*-(4'-

substituted)benzyl 2-acetamido-3-methoxypropionamides. 2010 *J. Med. Chem. 53*, 1288–1305.

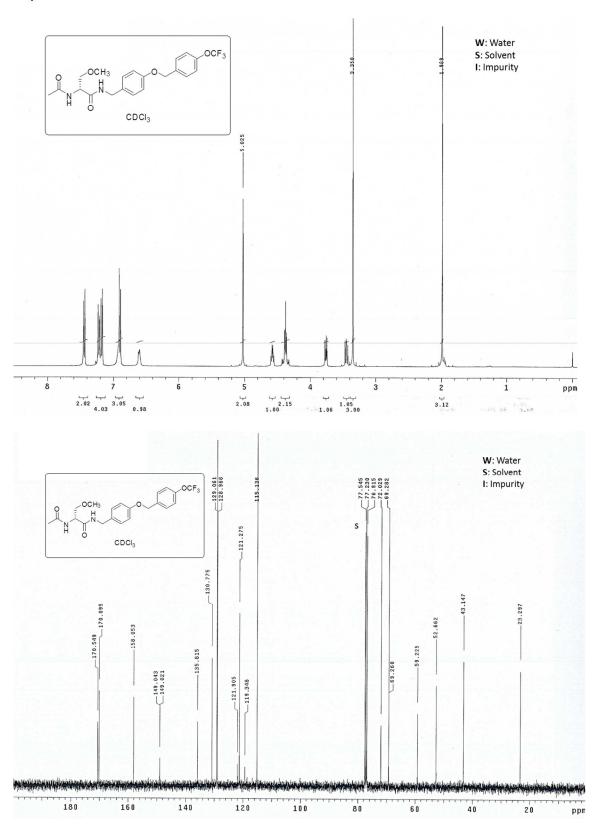

4. Pevarello, P., Bonsignori, A., Dostert, P., Heidempergher, F., Pinciroli, V., Colombo, M., McArthur, R. A., Salvati, P., Post, C., Fariello, R. G., and Varasi, M. 1998 Synthesis and anticonvulsant activity of a new class of 2-[(arylalkyl)amino]alkanamide derivatives. *J. Med. Chem.* 41, 579–590.

(R)-N-(4'-(3''-Chlorobenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((R)-7)

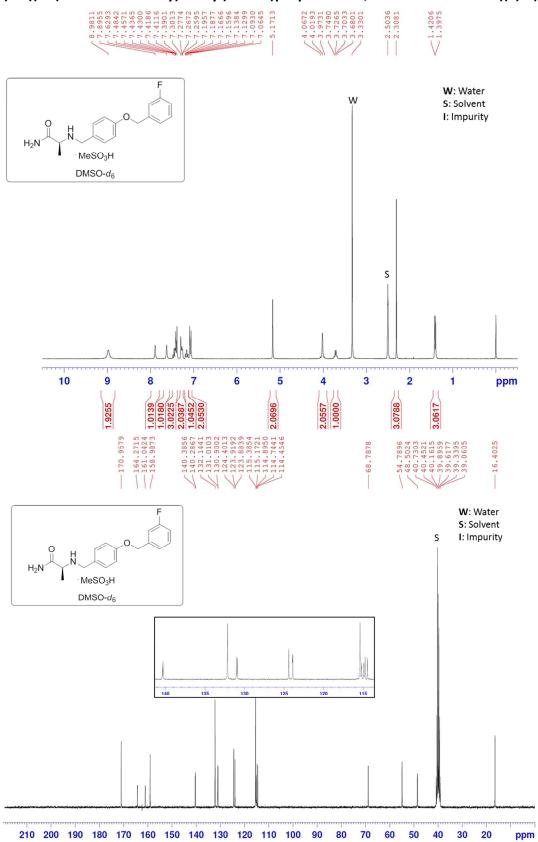


ppm

(R)-N-(4'-(4''-Chlorobenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((R)-8)



(R)-N-(4'-(3"-Trifluoromethoxybenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((R)-9)



(R)-N-(4'-(4"-Trifluoromethoxybenzyloxy)benzyl 2-Acetamido-3-methoxypropionamide ((R)-10)

(S)-2-((4'-(3"-fluorobenzoxy)benzyl)amino)propanamide, methanesulfonate ((S)-3)

